Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract We report the discovery of CHIME J1634+44, a long-period radio transient (LPT) unique for two aspects: it is the first known LPT to emit fully circularly polarized radio bursts, and it is the first LPT with a significant spin-up. Given that high circular polarization (>90%) has been observed in FRB 20201124A and in some giant pulses of PSR B1937+21, we discuss the implications of the high circular polarization of CHIME J1634+44 and conclude its emission mechanism is likely to be “pulsar-like.” While CHIME J1634+44 has a pulse period of 841 s, its burst arrival patterns are indicative of a secondary 4206 s period, probably associated with binary activity. The timing properties suggest it has a significantly negative period derivative of s s−1. Few systems have been known to spin up, most notably transitional millisecond pulsars and cataclysmic binaries, both of which seem unlikely progenitors for CHIME J1634+44. If the period was only associated with the spin of the object, then the spin-up is likely generated by accretion of material from a companion. If, however, the radio pulse period and the orbital period are locked, as appears to be the case for two other LPTs, the spin-up of CHIME J1634+44 could be driven by gravitational-wave radiation.more » « lessFree, publicly-accessible full text available July 17, 2026
- 
            Free, publicly-accessible full text available January 2, 2026
- 
            Abstract We present the first catalog of fast radio burst (FRB) host galaxies from CHIME/FRB Outriggers, selected uniformly in the radio and the optical by localizing 81 new bursts to 2″ × ∼ 60″ accuracy using CHIME and the k’niʔatn k’l ⌣ stk’masqt Outrigger station, located 66 km from CHIME. Of the 81 localized bursts, we use the probabilistic association of transients to their hosts algorithm to securely identify 21 new FRB host galaxies, and compile spectroscopic redshifts for 19 systems, 15 of which are newly obtained via spectroscopic observations. The most nearby source is FRB 20231229A, at a distance of 90 Mpc. One burst in our sample is from a previously reported repeating source in a galaxy merger (FRB 20190303A). Three new FRB host galaxies (FRBs 20230203A, 20230703A, and 20231206A) are found toward X-ray and optically selected galaxy clusters, potentially doubling the sample of known galaxy cluster FRBs. A search for radio counterparts reveals that FRB 20231128A is associated with a luminous persistent radio source (PRS) candidate with high significance (Pcc ∼ 10−2). If its compactness is confirmed, it would be the nearest known compact PRS atz= 0.1079. Our catalog significantly increases the statistics of the Macquart relation at low redshifts (z < 0.2). In the near future, the completed CHIME/FRB Outriggers array will produce hundreds of FRBs localized with very long baseline interferometry (VLBI). This will significantly expand the known sample and pave the way for future telescopes relying on VLBI for FRB localization.more » « lessFree, publicly-accessible full text available August 13, 2026
- 
            Abstract We report on contemporaneous optical observations at ≈10 ms timescales from the fast radio burst (FRB) 20180916B of two repeat bursts (FRB 20201023 and FRB 20220908) taken with the ‘Alopeke camera on the Gemini-North telescope. These repeats have radio fluences of 2.8 and 3.5 Jy ms, respectively, approximately in the lower 50th percentile for fluence from this repeating burst. The ‘Alopeke data reveal no significant optical detections at the FRB position and we place 3σupper limits to the optical fluences of <8.3 × 10−3and <7.7 × 10−3Jy ms after correcting for line-of-sight extinction. Together, these yield the most sensitive limits to the optical-to-radio fluence ratio of an FRB on these timescales withην< 3 × 10−3by roughly an order of magnitude. These measurements rule out progenitor models where FRB 20180916B has a similar fluence ratio to optical pulsars, such as the Crab pulsar, or where optical emission is produced as inverse-Compton radiation in a pulsar magnetosphere or young supernova remnant. Our ongoing program with ‘Alopeke on Gemini-North will continue to monitor repeating FRBs, including FRB 20180916B, to search for optical counterparts on millisecond timescales.more » « less
- 
            Abstract Precise localizations of a small number of repeating fast radio bursts (FRBs) using very long baseline interferometry (VLBI) have enabled multiwavelength follow-up observations revealing diverse local environments. However, the 2%–3% of FRB sources that are observed to repeat may not be representative of the full population. Here we use the VLBI capabilities of the full CHIME Outrigger array for the first time to localize a nearby (40 Mpc), bright (kJy), and apparently one-off FRB source, FRB 20250316A, to its environment on 13 pc scales. We use optical and radio observations to place deep constraints on associated transient emission and the properties of its local environment. We place a 5σupper limit ofL9.9 GHz < 2.1 × 1025erg s−1Hz−1on spatially coincident radio emission, a factor of 100 lower than any known compact persistent radio source associated with an FRB. Our Keck Cosmic Webb Imager observations allow us to characterize the gas density, metallicity, nature of gas ionization, dust extinction, and star formation rate through emission line fluxes. We leverage the exceptional brightness and proximity of this source to place deep constraints on the repetition of FRB 20250316A and find that it is inconsistent with all well-studied repeaters given the nondetection of bursts at lower spectral energies. We explore the implications of a measured offset of 190 ± 20 pc from the center of the nearest star formation region in the context of progenitor channels. FRB 20250316A marks the beginning of an era of routine localizations for one-off FRBs on tens of milliarcseconds scales, enabling large-scale studies of their local environments.more » « lessFree, publicly-accessible full text available August 20, 2026
- 
            Abstract We present the host galaxies of four apparently nonrepeating fast radio bursts (FRBs), FRB 20181223C, FRB 20190418A, FRB 20191220A, and FRB 20190425A, reported in the first Canadian Hydrogen Intensity Mapping Experiment (CHIME/FRB) catalog. Our selection of these FRBs is based on a planned hypothesis testing framework where we search all CHIME/FRB Catalog-1 events that have low extragalactic dispersion measure (<100 pc cm−3), with high Galactic latitude (∣b∣ > 10°) and saved baseband data. We associate the selected FRBs with galaxies with moderate to high star formation rates located at redshifts between 0.027 and 0.071. We also search for possible multimessenger counterparts, including persistent compact radio and gravitational-wave sources, and find none. Utilizing the four FRB hosts from this study, along with the hosts of 14 published local Universe FRBs (z< 0.1) with robust host association, we conduct an FRB host demographics analysis. We find all 18 local Universe FRB hosts in our sample to be spirals (or late-type galaxies), including the host of FRB 20220509G, which was previously reported to be elliptical. Using this observation, we scrutinize proposed FRB source formation channels and argue that core-collapse supernovae are likely the dominant channel to form FRB sources. Moreover, we infer no significant difference in the host properties of repeating and apparently nonrepeating FRBs in our local Universe FRB host sample. Finally, we find the burst rates of these four apparently nonrepeating FRBs to be consistent with those of the sample of localized repeating FRBs observed by CHIME/FRB. Therefore, we encourage further monitoring of these FRBs with more sensitive radio telescopes.more » « less
- 
            Abstract Based on the rate of change of its orbital period, PSR J2043+1711 has a substantial peculiar acceleration of 3.5 ± 0.8 mm s–1yr–1, which deviates from the acceleration predicted by equilibrium Milky Way (MW) models at a 4σlevel. The magnitude of the peculiar acceleration is too large to be explained by disequilibrium effects of the MW interacting with orbiting dwarf galaxies (∼1 mm s–1yr–1), and too small to be caused by period variations due to the pulsar being a redback. We identify and examine two plausible causes for the anomalous acceleration: a stellar flyby, and a long-period orbital companion. We identify a main-sequence star in Gaia DR3 and Pan-STARRS DR2 with the correct mass, distance, and on-sky position to potentially explain the observed peculiar acceleration. However, the star and the pulsar system have substantially different proper motions, indicating that they are not gravitationally bound. However, it is possible that this is an unrelated star that just happens to be located near J2043+1711 along our line of sight (chance probability of 1.6%). Therefore, we also constrain possible orbital parameters for a circumbinary companion in a hierarchical triple system with J2043+1711; the changes in the spindown rate of the pulsar are consistent with an outer object that has an orbital period of 60 kyr, a companion mass of 0.3M⊙(indicative of a white dwarf or low-mass star), and a semimajor axis of 1900 au. Continued timing and/or future faint optical observations of J2043+1711 may eventually allow us to differentiate between these scenarios.more » « lessFree, publicly-accessible full text available April 7, 2026
- 
            Free, publicly-accessible full text available November 1, 2025
- 
            Abstract We report 10 fast radio bursts (FRBs) detected in the far sidelobe region (i.e., ≥5° off-meridian) of the Canadian Hydrogen Intensity Mapping Experiment (CHIME) from August 28 2018 to August 31 2021. We localize the bursts by fitting their spectra with a model of the CHIME/FRB synthesized beam response. We find that the far sidelobe events have on average ∼500 times greater fluxes than events detected in CHIME’s main lobe. We show that the sidelobe sample is therefore statistically ∼20 times closer than the main lobe sample. We find promising host galaxy candidates (Pcc< 1%) for two of the FRBs, 20190112B and 20210310B, at distances of 38 and 16 Mpc, respectively. CHIME/FRB did not observe repetition of similar brightness from the uniform sample of 10 sidelobe FRBs in a total exposure time of 35,580 hr. Under the assumption of Poisson-distributed bursts, we infer that the mean repetition interval above the detection threshold of the far sidelobe events is longer than 11,880 hr, which is at least 2380 times larger than the interval from known CHIME/FRB detected repeating sources, with some caveats, notably that very narrowband events could have been missed. Our results from these far sidelobe events suggest one of two scenarios: either (1) all FRBs repeat and the repetition intervals span a wide range, with high-rate repeaters being a rare sub-population, or (2) non-repeating FRBs are a distinct population different from known repeaters.more » « less
- 
            Abstract Pulsar timing array experiments have recently uncovered evidence for a nanohertz gravitational wave background by precisely timing an ensemble of millisecond pulsars. The next significant milestones for these experiments include characterizing the detected background with greater precision, identifying its source(s), and detecting continuous gravitational waves from individual supermassive black hole binaries. To achieve these objectives, generating accurate and precise times of arrival of pulses from pulsar observations is crucial. Incorrect polarization calibration of the observed pulsar profiles may introduce errors in the measured times of arrival. Further, previous studies have demonstrated that robust polarization calibration of pulsar profiles can reduce noise in the pulsar timing data and improve timing solutions. In this paper, we investigate and compare the impact of different polarization calibration methods on pulsar timing precision using three distinct calibration techniques: the Ideal Feed Assumption (IFA), Measurement Equation Modeling (MEM), and Measurement Equation Template Matching (METM). Three NANOGrav pulsars—PSRs J1643−1224, J1744−1134, and J1909−3744—observed with the 800 MHz and 1.5 GHz receivers at the Green Bank Telescope (GBT) are utilized for our analysis. Our findings reveal that all three calibration methods enhance timing precision compared to scenarios where no polarization calibration is performed. Additionally, among the three calibration methods, the IFA approach generally provides the best results for timing analysis of pulsars observed with the GBT receiver system. We attribute the comparatively poorer performance of the MEM and METM methods to potential instabilities in the reference noise diode coupled to the receiver and temporal variations in the profile of the reference pulsar, respectively.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
